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Why Hydrodynamic Surface Water Connected 

to Groundwater? 

 Coastal South Florida has very low 
gradients and multidirectional flows 
which require the complexity of a 
hydrodynamic solution 

 Coupling to groundwater is 
essential with the high connectivity 
of the porous aquifer.  

 Computation of salinity and 
temperature transport needed for 
ecologic applications 



Hydrologic Modeling Tasks 

 Develop Hindcast models of recent historic 

periods 

 Represent historic and modern storm events  

 Develop futurecast models using downscaled 

Global Climate Model rainfall 

 Utilize historic and modern vegetation/hydrology 

information to estimate topographic changes 
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Future Impacts of Sea-level rise on Coastal Habitats and Species 

(FISCHES) team 

“Past and Future Impacts of Climate Change on Coastal Habitats and 

Species in the Everglades: an Integrated Modeling Approach” 

Simulate historical period with 

FTLOADDS model to determine 

water levels, salinity, and flows and 

compare with historic aerial 

photography 

  

 

Represent historic storms and 

effects on coastal regimes  

 

Utilize stochastic technique to 

determine topographic differences 

between modern and historic 

simulations 

 
Mouth of the Little Shark River 

from 2004 aerial imagery 



Data Input for Hindcast BISECT MODEL 
Representing historical periods 

1926-1932, 1934-1940, 1996-2002 

 Boundary Data 

 Tidal levels adjusted using Key West record 

 Rainfall from historic gages 

 Hurricane events specified individually 

 Basic wind and atmospheric data used from 1996-2002 

 Northern boundary flows synthesized based on Lake 
Okeechobee  
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Representation of Hurricane Windfields 

 Hurricane Wilma reanalysis data scaled and 
reoriented to provide surrogate windfield data to 
represent Great Miami Hurricane of 1926 

 Windfield in original form used to represent Wilma-
type storm striking at different historical times 

 Effects of representing the windfield at different 
spatial resolutions examined 

 

 

Simulation of 1926 E-W trending Great Miami Hurricane 



Hurricane Wilma 

Great Miami Hurricane 
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Harney River salinity

Shark River salinity

Salinity surge and washout matches with 

field data at coastal creeks. 

Comparison of "1996 Wilma simulation" of salinity 

surges to actual 2005 Wilma field measurements 
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Potential long-term hurricane effect on southeastern 

isolated wetland. 



Hindcast

Modern salinity

0    5   10  15   20  25  30  35

Simulating effects of Wilma-type storm on hindcast 

hydrology (1926) and recent hydrology (1996). 



Downscaled Global Climate Model 

rainfall applied to hydrology model 

 Time series from late 20th century 

and mid 21st century used 

Rainfall differences combined with 

sea-level differences to predict net 

effect 
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2038-2041 rainfall, 1 foot sea-level rise 

Comparison of average salinity between late 20th century scenario and 

future rainfall and sea-level rise scenario. 



Salinity washed on shore important to 

Mangrove-Hammock Model 
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Mangrove - Marsh from model

Model 2

σ_mangrove = (1.5*(60-Salinity))/(90-

Salinity)*30/(30+DAYS_SINCE_DRY×DEPTH/10 ) 

σ_marsh = 3.14/(3.14+Salinity)*(120×exp((1-

0.0002×DAYS_SINCE_DRY×DEPTH)))/(10+exp((5-

0.001×DAYS_SINCE_DRY×DEPTH)) )2  

σ_mangrove=(1.5*(60-Salinity))/(90-

Salinity)*exp(0.0116*(30-

DAYS_SINCE_DRY))*1.12/(1+0.12exp(3*DEPTH)  ) 

σ_marsh=3.14/(3.14+Salinity)*exp(0.0116*(180-

DAYS_SINCE_DRY))*1.02/(1+0.02exp(3*DEPTH)  ) 

Mangrove-Marsh equations use hydrologic 

model output to estimate vegetation distribution. 

Comparisons are made with observed 2004 

vegetation. 

Mangrove – Marsh from model Mangrove – Marsh from model 
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 This map shows how well model-predicted vegetation 

matches observed vegetation  



PEST adjusts land elevations
based on matching vegetation type

Land elevation
adjustments input
to FTLOADDS
hydrologic model

FTLOADDS hydrologic model computes
water-levels and salinity

Model output and relationship
of hydrology to vegetation
used to compute vegetation
types

Parameter estimation with PEST used to estimate land 

elevation differences using 1940 aerial photography to 

identify vegetation types 



 Water Supply Issues 
 Seawater encroachment effect on wellfields 

 Loss of coastal discharge capacities 

 

 Understanding climate change and effects to 
organisms 
 Sea level rise 

 Temperature increases 

 Precipitation changes 

 

 Understanding hurricane effects on hydrologic 
processes and resulting damage to habitats and 
other parameters that may impact organisms 
 Before and after models to identify mechanisms and  

    assess resilience of populations to storm events 

• Effects of potential future storm scenarios 

 
  

FUTURE USES OF THE MODELS & RESEARCH 
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